

On Farm Water Budget

Allan Wylie IDWR

On Farm Water Budget

- Develop constraints for adjustable on farm water budget parameters
 - Canal seepage (cnl)
 - Conveyance loss
 - Efficiency (Eff)
 - maximum achievable efficiency that a farmer could attain under water short conditions before further shortage in irrigation supply would cause a reduction in the number of acres irrigated.
 - Deep percolation inefficiency (DPin)
 - fraction of the initial irrigation loss diversions x (1 eff) that percolates below the root zone of the crop to the underlying aquifer under water short conditions.
 - Deep percolation excess (DPex)
 - fraction of excess applied water (farm delivery x eff minus ET) that percolates below the root zone. This is in addition to the deep percolation computed using the DPin parameter.

Canal Seepage

- Canal
 - In ESPAM2 most entities have canals
 - Adjustable by PEST through a scaling factor
- Recommendation
 - Fix for Surface Water Coalition
 - Presumed known
 - Allow minimal adjustment for others
 - Start scaling factor at 1.0
 - Adjust between 0.95 and 1.05
 - Have PEST keep adjustable scaling factors as similar as possible

Efficiency

- Eff a function of crop mix, irrigation method, and soil type.
 - Potatoes would always have adequate water because farmers are aware they are sensitive to moisture stress.
 - The achievable efficiency for potatoes is probably in the range of the design efficiency for the particular irrigation application.
 - Alfalfa and grass hay are not as sensitive to moisture stress, and farmers will tend to short these crops by deficit irrigating them.
 - This can result in irrigation efficiencies for these crops that are greater than the system design values.
 - Grain crops fall in between potatoes and the hay crops, being able to tolerate some moisture stress.
 - Bryce prepared several spreadsheets to assist in analyzing the economic impact of deficit irrigation.
 - Spreadsheet were used to help develop constraints for PEST

Efficiency

- PEST adjust entity efficiency
- Recommendation
 - Eff start at 0.8
 - Adjust between 0.75 0.90

Disconnect Between On-Farm and Measured Returns

- In ESPAM1.1, return flows were computed as a percentage of the diversions
 - Return flows were subtracted from the historical diversion to compute the water available to supply crops and recharge the aquifer
- In ESPAM2.0, diversions are not reduced to account for return flows
 - MkMod works with full diversions
 - Canal seepage is computed as a percentage of the diversions
 - diversions after Canal seepage are delivered to the entities were Eff is applied
 - On-farm losses are apportioned between aquifer recharge and surface runoff (returns) using the DPin and DPex factors
 - Potential for differences between the computed surface runoff with the On-Farm algorithm and the return flows used in the reach gain calculations

Disconnect Between On-Farm and Measured Returns

- Recommendation options
 - Incorporate measured returns as targets
 - 2001 and forward for most entities
 - Some available in 1980s
 - Requires additional rewrite by Willem and checking by Jim.
 - Tightly constrain DPin = DPex = return fraction
 - Both A and B

Effect of Soil Moisture

- Soil moisture can provide an additional source of supply to the crops when the amount diverted is not sufficient to meet the immediate crop needs.
- The committee concluded that a soil moisture algorithm should be incorporated in the On-Farm Water Budget calculations
- Jim Brannon indicated that he would prepare a flow chart and test the algorithm in MKMOD4 using deficit, minimal, and excess water conditions.

END

